Краткая история Вселенной



Итак, примерно 13,8 миллиардов лет назад произошел Большой взрыв, и 13,8 миллиардов световых лет — это горизонт видимости во Вселенной. Самые дальние объекты, которые астрономам уже удалось разглядеть, это несколько звездных скоплений на расстоянии 13,2 миллиардов световых лет. Таким образом, мы «получили привет» от молодой Вселенной, возраст которой был всего 600 миллионов лет!

 

Краткая история Вселенной: от большого взрыва до нашей эпохи

 

В принципе, мы могли бы заглянуть еще чуть дальше — вплоть до возраста 379 тысяч лет после Большого Взрыва. Почему именно такая цифра? Скоро узнаем.

 

Современные теории позволяют описать всё, что происходило, начиная от одной сотой секунды от Большого взрыва и до сего дня. Все нужные для этого законы являются надежно установленными, поэтому получаемую с их помощью информацию можно считать вполне достоверной. Принципиальные трудности возникают лишь при попытке продвинуться еще ближе к началу мира, то есть внутрь первой сотой доли секунды. Здесь мы выходим за рамки Стандартной модели и попадаем в область гипотетических теорий. И тем не менее научные гипотезы простираются вплоть до 10-35 с! Ещё ближе к началу мира, возможно, позволит в будущем приблизиться теория суперструн.

 

Давайте «прокрутим» основные события от Большого взрыва и до нашей эпохи. Итак...

 

Большой взрыв. По каким бы причинам ни возникла Вселенная, она начинает свою жизнь с планковского размера по всем измерениям (порядка 10-35 м) и планковской температуры (порядка 1032 К).

 

В этот начальный момент все 9 или 10 пространственных измерений свернуты в комок. Но уже через планковский квант времени (5x10-44 с) три пространственных измерения начинают расширяться, а оставшиеся сворачиваются определенным образом (свойства свернутых измерений определяют все фундаментальные константы нашего мира, а значит, и то, какие именно частицы потом в нем родятся).

 

Разворачивание трех пространственных измерений подстегивается само собой и становится скачкообразным. Этот этап расширения Вселенной, называют инфляционным, оно происходит во много раз быстрее обычного хаббловского расширения. Примерно за 10-32 секунды Вселенная раздулась в неимоверное число (1050) раз.

 

Краткая история Вселенной: от большого взрыва до нашей эпохи

 

Поначалу в горячей Вселенной бурно рождаются как частицы, так и античастицы. На каждый миллиард обычных частиц рождается почти столько же античастиц — но всё же на одну меньше. Затем частицы и античастицы аннигилируют, и вся их энергия превращается в излучение. Во Вселенной остается лишь жалкий клочок обычной материи. Из него-то и будут построены в дальнейшем все звезды и галактики.

 

К концу первой секунды расширения Вселенная остыла настолько, что кварки начинают группироваться в адроны, включая протоны и нейтроны. И с этого же момента начинается первичный ядерный синтез, который продолжается три минуты. Четверть всех ядер, сформировавшихся за это время — это гелий, чуточку дейтерия, а остальные три четверти — протоны. Таким и будет состав первых звезд.

 

Через 3 минуты Вселенная расширилась настолько, что столкновения ядер, в результате которых могли бы образовываться новые ядра, становятся огромной редкостью, и синтез ядер прекращается.

 

К исходу первых трёх минут Вселенная представляет собой раскаленное до миллиарда градусов море частиц — ядер и лептонов. Высокая температура не позволяет им объединиться в атомы. Это состояние раскаленной плазмы.

 

В следующие 379 тысяч лет ничего заметного не происходит — Вселенная спокойно расширяется и остывает. В этот период она непрозрачна для излучения, потому что фотоны постоянно рассеиваются на свободных электронах и ядрах. Это похоже на «светящийся туман».

 

Через 379 тысяч лет Вселенная охладилась достаточно (до 3000 градусов), чтобы из ядер и электронов могли образоваться нейтральные атомы. Среда становится прозрачной для света и остается таковой до сих пор. Говорят, что в этот момент излучение отделилось от вещества: с тех пор излучение расширяется и остывает само по себе, а вещество эволюционирует само по себе. Реликтовое тепловое излучение с характерной длиной волны около 4 см — это и есть то самое отделившееся излучение.

 

После отделения излучения от вещества началась тёмная эпоха — звезд еще не было, и светить было некому. На протяжении сотен миллионов лет вещество стягивалось к местам случайных первоначальных сгустков темной материи.

 

Через 600 миллионов лет после Большого взрыва стали формироваться галактики. Плотные и холодные облака газа сжимались, разогреваясь изнутри — и вот зажглись первые звезды. В их недрах начался синтез более тяжелых элементов, вплоть до железа. Через пару миллиардов лет Вселенная стала отдаленно напоминать то, что мы видим сегодня.

 

Массивные звезды первого поколения кончали свои жизни грандиозными взрывами, во время которых возникли элементы тяжелее железа. Потом из этого вещества сформировались звездные системы второго поколения, в том число и наша.

 

Процесс звёздообразования продолжается и сейчас, хотя темп его постепенно замедляется, поскольку запасы межзвездного вещества расходуются быстрее, чем пополняются.

 

Краткая история Вселенной: от большого взрыва до нашей эпохи

 

А что потом? 

 

Что касается нашего Солнца, то про его будущее можно сказать достаточно определенно. Солнце принадлежит к классу желтых карликов — спокойных долгоживущих звёзд. Уже около 5 млрд. лет оно светит, практически не меняясь. Но это может закончиться уже через 0,5 — 1 млрд. лет, когда водород в ядре звезды выгорит и зона термоядерного синтеза переместится в слои вокруг ядра. Это приведёт к «раздуванию» Солнца — оно превратится в красного гиганта. Через 4 миллиарда лет Солнце раздуется так, что поглотит Меркурий, Венеру и почти достигнет орбиты Земли. На Земле вся вода испарится, а большая часть атмосферы рассеется в космическое пространство. Ничего живого, понятное дело, не останется. А в ядре Солнца гелий начнет превращаться в углерод. Когда же и гелий «выгорит», Солнце может взорваться, сбросив свою распухшую оболочку. Оставшееся после взрыва компактное ядро (белый карлик) будет постепенно остывать, превращаясь в холодное безжизненное тело.

 

А что касается возможного развития Вселенной в будущем, то имеются самые разные сценарии. Теоретики, например, рассматривают гипотезу «Большого разрыва», связанного с изменением состояния вакуума, в момент которого наша Вселенная исчезнет за одно мгновение. Но это не очень скоро — через 22 млрд. лет, и не наверняка.

 

Если же такого не произойдет, то через сотни миллиардов лет погаснут последние звезды, и галактики погрузятся во тьму. Все планетные системы будут постепенно разрушены. Вероятно, галактики превратятся в гигантские черные дыры. В результате квантового процесса «испарения» черные дыры в конце концов тоже исчезнут, и Вселенная будет представлять собой расширяющийся нейтринно-фотонный газ. В общем, совершенно безрадостная картина.

 

Но история космологии уже неоднократно демонстрировала нам, что картины, нарисованные совсем недавно, неожиданно оказываются устаревшими.

 

Реальность бесконечно разнообразнее и интереснее наших сегодняшних представлений о ней. Работы для физиков и космологов — непочатый край!

 

Подписывайтесь, друзья, на наш телеграм-канал по биологии и канал про животных.